在线观看日韩av毛片-天堂中文最新资源在线-女人高潮私密按摩视频-欧美日本伦理在线观看

陳頌英
發(fā)布時(shí)間:2017-11-12 22:54:12    作者:    點(diǎn)擊:[]
姓名 陳頌英
性別

                              undefined

出生年月 1966.10
行政職務(wù) 所長
學(xué)歷 博士研究生 學(xué)位 博士
專業(yè)技術(shù)職務(wù)及任導(dǎo)師情況  教授,博士研究生導(dǎo)師
所在一級(jí)學(xué)科名稱  動(dòng)力工程及工程熱物理
所在二級(jí)學(xué)科名稱  化工過程機(jī)械

學(xué)術(shù)身份

教育部過程裝備與控制工程專業(yè)教學(xué)指導(dǎo)委員會(huì)委員


學(xué)術(shù)兼職

中國流體工程學(xué)會(huì)會(huì)員,全國噴射設(shè)備標(biāo)準(zhǔn)化技術(shù)委員會(huì)委員

 

國內(nèi)外學(xué)習(xí)和工作經(jīng)歷

1984.9—1988.7   浙江大學(xué)化工系畢業(yè),獲化工機(jī)械及工業(yè)企業(yè)管理雙學(xué)士學(xué)位
1988.7—2000.9  山東工業(yè)大學(xué)環(huán)境與化學(xué)工程學(xué)院化工機(jī)械教研室  教師
2000.9—        山東大學(xué)機(jī)械工程學(xué)院過程裝備與控制工程研究所  教師
期間:
1994.9—1997.7  山東工業(yè)大學(xué)力學(xué)研究所固體力學(xué)方向  獲工學(xué)碩士學(xué)位
2002.2—2005.6   浙江大學(xué)化工機(jī)械研究所流體機(jī)械方向  獲工學(xué)博士學(xué)位
2013.12—2014.12  美國特拉華大學(xué)機(jī)械系訪問學(xué)者

 

主講課程

本科生:《工程流體力學(xué)》;《過程流體機(jī)械》
碩士研究生:《高等流體力學(xué)》;《湍動(dòng)力學(xué)》;《離心泵流體力學(xué)》;《計(jì)算流體力學(xué)》
博士研究生:《流體力學(xué)數(shù)值方法》


研究領(lǐng)域
過程流體機(jī)械內(nèi)流分析及結(jié)構(gòu)優(yōu)化, 計(jì)算流、固體力學(xué), 金屬材料腐蝕


承擔(dān)科研項(xiàng)目情況


代表性項(xiàng)目

(1)國家自然科學(xué)基金面上項(xiàng)目,52176040,反假塑性流體攪拌洞穴演化及混沌特性研究,2022/01-2025/12,58萬,主持。

(2)國家自然科學(xué)基金面上項(xiàng)目,51176102,低壓自激脈沖空化射流的空泡運(yùn)動(dòng)及打擊特性研究,2012/01-2015/12,60萬元,主持。

(3)國家基金委山東聯(lián)合基金   U2006221,反滲透海水淡化裝置系統(tǒng)節(jié)能關(guān)鍵技術(shù)基礎(chǔ)研究,2021/01-2024/12,110萬,主持。

(4)國家質(zhì)檢總局科技計(jì)劃項(xiàng)目,2011QK235,基于應(yīng)力腐蝕斷裂的承壓設(shè)備材料在氯離子環(huán)境中失效判據(jù)研究,2012/06-2014/12,120萬,主持。

(5)國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)項(xiàng)目,2011CB013401,機(jī)械裝備再制造的基礎(chǔ)科學(xué)問題課題一,再制造對(duì)象的多強(qiáng)場(chǎng)、跨尺度損傷行為與機(jī)理,可再制造的臨界閾值,2011/11-2016/11,252萬,參與,負(fù)責(zé)腐蝕課題。

(6)國家高技術(shù)研究發(fā)展計(jì)劃(863),2009AA044802-02,復(fù)雜腐蝕環(huán)境承壓設(shè)備的材料選擇、結(jié)構(gòu)優(yōu)化、焊接工藝篩選及熱處理優(yōu)化技術(shù),2010/09-2011/08,20萬,參與,負(fù)責(zé)碳素鋼高溫水腐蝕研究。

(7)山東省科技攻關(guān)計(jì)劃項(xiàng)目,2008GG10007008,非均相自激脈沖射流防沉降系統(tǒng)研究,2008/11-2010/10,15萬,主持。

(8)山東省重點(diǎn)研發(fā)計(jì)劃,2016GGX104018,機(jī)械零部件基于腐蝕疲勞損傷的綠色再制造臨界閾值的研究,2016/01-2017/12,20萬,主持。

(9)山東省重點(diǎn)研發(fā)計(jì)劃,2019GGX102058,高溫電容模塊的超薄聚丙烯薄膜研發(fā),15萬,2019/01-2020/12,參與,第二位次。

(10)山東省教育廳專業(yè)學(xué)位研究生案例庫,SDYAL20010,面向新舊動(dòng)能轉(zhuǎn)換的計(jì)算流體力學(xué)全英文教學(xué)案例庫建設(shè),2021/01-2022/12,5萬,主持。

(11)山東省自然科學(xué)基金面上基金,ZR2021ME161,高壓自激脈沖空化射流消除機(jī)械構(gòu)件殘余應(yīng)力機(jī)理研究,2022/01-2024/12,10萬,主持。

(12)煙臺(tái)市“雙百計(jì)劃”藍(lán)色產(chǎn)業(yè)領(lǐng)軍人才團(tuán)隊(duì)項(xiàng)目,智能化浮動(dòng)式海上平臺(tái)高壓注水泵關(guān)鍵技術(shù)研究   2020/09-2023/08,120萬,主持。

(13)淄博市重點(diǎn)研發(fā)計(jì)劃(市外校城融合)項(xiàng)目,2020XCCG0160,高純氧化鋁高效綠色脫鈉技術(shù)裝備研發(fā),2020/03-2021/12,25萬,參與,第二位次。


論文、專利 


近年來發(fā)表的一作與通訊論文

(1) Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller[J]. Chinese Journal of Mechanical Engineering, 2015, 28(2): 217-225. (SCI)

(2) Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution[J]. Results in physics, 2016, 6: 365-372. (SCI)

(3) Experimental study on the stress corrosion cracking behavior of AISI347 in acid chloride ion solution[J]. Results in physics, 2016, 6: 690-697. (SCI)

(4) Improving lattice Boltzmann simulation of moving particles in a viscous flow using local grid refinement[J]. Computers & Fluids, 2016, 136: 228-246. (SCI)

(5) Effects of temperature and pressure on stress corrosion cracking behavior of 310S stainless steel in chloride solution[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 200-206. (SCI)

(6) A computational study on gas–liquid flow in a lime slurry pond equipped with a rotary jet mixing system[J]. Advances in Mechanical Engineering, 2017, 9(2): 1687814017690468. (SCI)

(7) Orthogonal experimental research on the structural parameters of a self-excited pulsed cavitation nozzle[J]. European Journal of Mechanics-B/Fluids, 2017, 65: 179-183. (SCI)

(8) Numerical investigation of multiphase flow in flue gas desulphurization system with rotary jet stirring[J]. Results in physics, 2017, 7: 1274-1282. (SCI)

(9) Numerical investigation on the prefabricated crack propagation of FV520B stainless steel[J]. Results in physics, 2017, 7: 3738-3743. (SCI)

(10) Experimental study on electrochemical corrosion of FV520B in natural gas environment[J]. Results in physics, 2017, 7: 4405-4411. (SCI)

(11) Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen[J]. Results in Physics, 2018, 9: 463-470. (SCI)

(12) Experimental investigation on the stress corrosion cracking of FV520B welded joint in natural gas environment with ECP and SSRT[J]. Engineering Fracture Mechanics, 2018, 200: 166-174. (SCI)

(13) A review of CFD modelling studies on the flotation process[J]. Minerals Engineering, 2018, 127: 153-177. (SCI)

(14) Numerical investigation on the stress corrosion cracking of FV520B based on the cohesive zone model[J]. Results in Physics, 2019, 12: 118-123. (SCI)

(15) Study on different line gasoline blending with RJM via numerical investigation[J]. Results in Physics, 2019, 12: 1285-1290. (SCI)

(16) A lattice Boltzmann study of the collisions in a particle-bubble system under turbulent flows[J]. Powder Technology, 2020, 361: 759-768. (SCI)

(17) Experimental study on the frequency characteristics of self-excited pulsed cavitation jet[J]. European Journal of Mechanics-B/Fluids, 2020, 83: 66-72. (SCI)

(18) Experimental study on stress corrosion of X12Cr13 stainless steel in natural gas environment[J]. Journal of Materials Research and Technology, 2020, 9(3): 3064-3074. (SCI)

(19) A review on hydrodynamic cavitation disinfection: The current state of knowledge[J]. Science of the Total Environment, 2020, 737: 139606. (SCI)

(20) Research on parameterization and optimization procedure of low-Reynolds-number airfoils based on genetic algorithm and Bezier curve[J]. Advances in Engineering Software, 2020, 149: 102864. (SCI)

(21) Particle-resolved direct numerical simulation of collisions of bidisperse inertial particles in a homogeneous isotropic turbulence[J]. Powder Technology, 2020, 376: 72-79. (SCI)

(22) Numerical investigation on distribution characteristics of oxidation air in a lime slurry desulfurization system with rotary jet agitators[J]. Chemical Engineering and Processing-Process Intensification, 2021, 163: 108372. (SCI)

(23) Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale[J]. Ultrasonics Sonochemistry, 2021, 73: 105543. (SCI)

(24) Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications[J]. Chemical Engineering Journal, 2021, 412: 128600. (SCI)

(25) Numerical study on the flow characteristics of centrifugal compressor impeller with crack damage[J]. Advances in Mechanical Engineering, 2021, 13(7): 16878140211034622. (SCI)

(26) A comparison of different methods for estimating turbulent dissipation rate in under-resolved flow fields from synthetic PIV images[J]. Chemical Engineering Research and Design, 2021, 175: 161-170. (SCI)

(27) Numerical investigation of ozone decomposition by self-excited oscillation cavitation jet[J]. Open Physics, 2022, 20(1): 94-105. (SCI)

(28) Experimental study of Taylor bubble flow in non-Newtonian liquid in a rectangular microchannel[J]. Chemical Engineering Science, 2022, 252: 117509. (SCI)

(29) The finite element modeling of the impacting process of hard particles on pump components[J]. Open Physics, 2022, 20(1): 596-608. (SCI)

(30) Numerical Study on Entropy Generation of the Multi-Stage Centrifugal Pump[J]. Entropy, 2022, 24(7): 923. (SCI)

(31) Numerical analysis of internal flow characteristics and energy consumption assessment in full flow field of multi-stage centrifugal pump considering clearance flow[J]. Advances in Mechanical Engineering, 2022, 14(9): 16878132221123423. (SCI)

(32) Theoretical and Numerical Research on Heat Transfer Mechanism and Temperature Characteristics of Electric Rotary Alumina Kiln[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(12): 121002. (SCI)

授權(quán)發(fā)明專利

(1) 一種旋轉(zhuǎn)射流混合器,201110268093.2

(2) 粉體氣力混合系統(tǒng),201310078322.3

(3) 一種旋轉(zhuǎn)門用鞋底清潔裝置,2018 1 0764676.6

(4) 一種有機(jī)廢水超聲及水力空化聯(lián)合處理裝置,201910253868.5

(5) 一種通過油水混合制備調(diào)和潤滑油的水力空化裝置,201910253859.6

(6) 一種有機(jī)廢水三級(jí)水力空化處理系統(tǒng),201910253854.3

(7) 一種低速狀態(tài)下微氣泡產(chǎn)生裝置,201910253856.2

(8) 一種水力空化式海水或苦咸水的淡化裝置,201910253858.1

(9) 一種失活污泥降解水力空化裝置,201910641010.6

(10) 強(qiáng)化纖維素紙漿精煉生產(chǎn)的空化裝置,202011439434.3

(11) 耦合水力空化、聲空化與光催化的抗生素廢水處理裝置,202010757495.8

(12) 一種農(nóng)藥廢水芬頓試劑與水力空化聯(lián)合處理系統(tǒng),201910253866.6

(13) 基于渦激效應(yīng)的一體化耦合壓電發(fā)電裝置,202011032434.1

(14) 空化于起泡一體化尾礦浮選裝置,202011439436.2

(15) 催化劑載體及微通道連續(xù)流反應(yīng)器,202010066883.1

(16) 一種旋流梯度剪切流場(chǎng)石墨烯剝離裝置,201910253862.8


獲獎(jiǎng)情況

2001.10 邊界輪廓法理論及應(yīng)用研究

山東省高校優(yōu)秀科研成果三等獎(jiǎng) 第二位,主要貢獻(xiàn)為斷裂力學(xué)邊界輪廓法的研究

2002.11 高速離心式氯氣壓縮機(jī)設(shè)計(jì)與工業(yè)化應(yīng)用

浙江省科技進(jìn)步二等獎(jiǎng) 第一位

2015.09 攪拌與射流耦合誘發(fā)假塑性流體混沌混合特性研究

山東省高校優(yōu)秀科研成果三等獎(jiǎng) 第二位

 



聯(lián)系方式

手機(jī)號(hào)碼:15628826922
聯(lián)系電話:0531-88392378
電子郵箱:chensy66@sdu.edu.cn
QQ號(hào)碼:1913834633

 

上一條:鄧建新 下一條:馮顯英

關(guān)閉

Copyright ©2017-2020 山東大學(xué)機(jī)械工程學(xué)院 All rights reserved.
辦公地址:山東省濟(jì)南市經(jīng)十路17923號(hào)山東大學(xué)千佛山校區(qū) 郵編:250061 電話:0531-88392608 傳真:0531-88392608 [網(wǎng)站管理]